sabato 17 novembre 2012

I logaritmi in chimica/1ª parte.

L'operazione di logaritmo si incontra piuttosto di frequente in chimica ad esempio nella definizione del pH. Il pH è definito come il negativo del logaritmo in base 10 della concentrazione di ioni idrogeno, ossia:
                       pH = - log10 [H+]

Il logaritmo si usa anche in definizioni simili a quelle del pH, ma applicate alle costanti di equilibrio (K), ossia le pK:

pK = - log10 K

Quindi una conoscenza basilare dell’operazione di logaritmo è fondamentale. In particolare in chimica e in fisica si incontrano frequentemente i logaritmi in base 10 e in base e (ossia il numero di Nepero che vale 2,7182…). Questi ultimi vengono detti logaritmi naturali.

In questo post, per semplicità e per la loro utilità, considererò esclusivamente i logaritmi in base 10, ma tutto quello che dirò potrà essere applicato tranquillamente anche ai logaritmi in base e e a quelli in qualsiasi altra base.

Cominciamo con qualche definizione. Data l’espressione:

b = log10 a

a viene chiamato argomento del logaritmo, 10 è la base del logaritmo e b, essendo il risultato dell’operazione, è detto il logaritmo. Ma cosa vuol dire che “b è il logaritmo in base 10 di a” ? È semplice. Significa che:

10b = a

ossia che se elevo 10 (la base) per b otterrò a (l’argomento). Possiamo quindi dire che trovare il logaritmo in base 10 di un numero a significa trovare l’esponente a cui elevare la base (10) per ottenere a (l’argomento).
Facciamo qualche esempio concreto:

Esempio 1:  log10 1000 = ?

La risposta è facile. Basta chiedersi: a quale potenza devo elevare 10 per ottenere 1000? La soluzione è 3. Infatti 103 = 1000. Quindi:

log10 1000 = 3

Esempio 2: log10 2000 = ?

La risposta qui non è di certo 6, infatti pur essendo 2000 il doppio di 1000, abbiamo che 106 = 1000000 e non 2000. Per dare una risposta si deve usare una calcolatrice (o, come facevano i nostri vecchi, consultare le tavole cartacee dei logaritmi). La calcolatrice di Windows mi dice:

log10 2000 = 3,3010299956639811952137388947245

Il risultato è un po’ più grande di 3 e più piccolo di 6 per cui, per quello che ne sappiamo, dovrebbe essere giusto. Se proviamo a verificarlo calcolando la potenza di 10, infatti si ha:

103,3010299956639811952137388947245 = 2000

A questo punto occorre fare una piccola considerazione sul calcolo dei logaritmi con la calcolatrice. Bisogna fare attenzione! Infatti in molte calcolatrici compare anche il tasto marcato con ln o simili, che in genere significa logaritmo naturale, ossia quello in base e di cui abbiamo accennato prima. Di solito il logaritmo in base 10 viene calcolato premendo il tasto marcato con log. Se avete dubbi sul funzionamento dei tasti della vostra calcolatrice, provate a fare dei calcoli di prova di cui conoscete il risultato, oppure consultate il manuale della vostra calcolatrice.

Esempio 3: log10 1 = ?

La risposta è semplice se si ricorda che qualsiasi base (e quindi anche 10) elevata a zero dà 1, per cui:

log10 1 = 0

Da questo esempio possiamo trarre una conclusione molto generale, ossia il logaritmo di 1 in qualsiasi base è sempre 0.

Ed adesso un esempio apparentemente difficile:

Esempio 4: log10 0,1 = ?

Si può pensare di ricorrere alla calcolatrice, ma si può dare una risposta immediata se ricorda che: 0,1 = 10-1 . Si può quindi riscrivere il nostro esempio come:

log10 0,1 = log10 10-1 = ?

La risposta a questo punto è banale: a quale potenza devo elevare 10 per ottenere 10-1 ? Ovviamente –1. Per cui:

log10 0,1 = –1

Esempio 5: log10 0,001 = ?

Se avete capito l’esempio di prima qui non è difficile, perché 0,001 = 10-3
per cui: log10 0,001 = -3

Ed adesso un esempio finale che mette in evidenza una caratteristica che deve possedere l’argomento del logaritmo.

Esempio 6: log10 -0,1 = ?

A quale potenza devo elevare 10 per ottenere –0,1? Se provate a far fare il calcolo alla calcolatrice otterrete senz’altro una risposta di errore e questo perché una soluzione a questo calcolo non esiste. Quindi:

log10 -0,1 = non esiste

Del resto se ci pensate bene anche elevando 10 ad un esponente negativo si ottiene sempre un valore positivo seppur piccolo (vedi Esempio 4 e 5 prima). Da qui ricaviamo la condizione che l’argomento del logaritmo deve sempre essere maggiore di zero affinché il logaritmo abbia un senso. A questo proposito sorge spontanea la domanda: esiste un valore per il logaritmo di zero, ossia:

log10 0 = ?

Si può pensare che elevando 10 ad un numero negativo grandissimo si possa ottenere zero. Per la precisione il numero negativo deve essere infinitamente grande e si scrive:

log10 0 = –∞

e si dice che il logaritmo di zero vale “meno infinito”.

E va bene, l’argomento del logaritmo deve essere maggiore di zero, ma per quel che riguarda la base del logaritmo cosa possiamo dire? Anche la base deve essere maggiore di zero. Infatti, sebbene si possa calcolare ad esempio:

-103 = 1000

ossia le potenze di –10 per valori interi (0, 1, 2, 3, …) dell’esponente, elevare –10 ad un esponente non intero non ha nessun senso, ad esempio:

-101,5 = ?? è un’espressione che non ha nessun senso!

Non ha senso nemmeno una base uguale ad 1, infatti ad esempio:

log1 2 = non esiste

ossia il logaritmo in base 1 per qualsiasi valore dell’argomento (tranne 1) non esiste, infatti non esiste un esponente a cui elevare 1 per ottenere 2!

Ovviamente sono accettabili basi non intere comprese tra 1 e 0, e basi maggiori di 1 come la nostra base 10 che viene usata nella definizione del pH.

Per concludere si può quindi dire che, affinché l’operazione di logaritmo abbia senso:
  • l’argomento del logaritmo deve essere maggiore di 0
  • la base del logaritmo deve essere maggiore di 0 e diversa da 1
In un prossimo post mi occuperò delle proprietà dell’operazione logaritmo che sono molto utili nello svolgere calcoli.


Nessun commento:

Posta un commento

Commenta il post